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Abstract 

Hemiarthroplasty procedures replace the diseased side of the joint with an implant to 

maximize bone preservation while maintaining more native anatomy than a total joint 

replacement. Even though hemiarthroplasty procedures have been clinically successful, they 

cause progressive cartilage damage over time due to the use of relatively stiff metallic 

implant materials. This work investigates the role of low moduli implant material on implant-

cartilage contact mechanics and early in vitro cartilage wear. A finite element simulation was 

developed to assess the effect of low moduli implants in the range of 0.015-0.288 GPa on 

cartilage contact area and peak contact stress. Within the range of implant materials 

examined, higher contact area and lower peak contact stress was quantified as the Young’s 

moduli decreased, particularly when the modulus was below 0.039 GPa. Bionate implants 

were then fabricated through microinjection moulding for three different Young’s moduli of 

this biomaterial (0.020 GPa, 0.035 GPa and 0.222 GPa). An in vitro wear study was 

conducted using a pin-on-plate simulator to investigate the effect of these different Bionate 

formulations on cartilage wear. A significant decrease in cartilage wear was observed for the 

0.020 GPa and 0.035 GPa Bionate implants (p<0.001). In conclusion, these studies have 

demonstrated the desirable range of hemiarthroplasty implant moduli to reduce cartilage 

wear, and have shown that Bionate implants have the potential to provide improved long-

term outcomes of joint hemiarthroplasty. 

 

Keywords 

Hemiarthroplasty, Bionate, polycarbonate urethane, cartilage wear, Young’s modulus, 

biomaterials, biomechanics, contact area, contact stress 

 



 

ii 

 

Co-Authorship Statement 

Chapter One- sole authorship 

Chapter Two 

Study Design- Sarah DeDecker, James Johnson, Dan Langohr 
 Data Gathering- Sarah DeDecker, Dan Langohr 

Writing- Sarah DeDecker 
 Revisions- Sarah DeDecker, James Johnson 
 
Chapter Three 

 
Study Design- Sarah DeDecker, James Johnson, Dan Langohr, Andrew Hrymak 

 Data Gathering- Sarah DeDecker, Dan Langohr 
Writing- Sarah DeDecker 

 Revisions- Sarah DeDecker, James Johnson, Andrew Hrymak 
 
Chapter Four 
 

Study Design- Sarah DeDecker, Alana Khayat, Dan Langohr 
 Data Gathering- Sarah DeDecker 
 Data Analysis- Sarah DeDecker, Alana Khayat, Ryan Willing 

Statistical Analysis- Sarah DeDecker, Dan Langohr 
Writing- Sarah DeDecker 

 Revisions- Sarah DeDecker, James Johnson 
 
Chapter Five- sole authorship 
 

 

 



 

iii 

 

Acknowledgments 

I would like to start off by thanking my supervisors, Dr. James Johnson and Dr. Andrew 

Hrymak. Dr. Johnson, you have provided me with so many opportunities to gain knowledge 

in orthopaedics and to grow as a researcher. You always gave me valuable advice and 

encouragement even when things got tough. I truly appreciate all the guidance and support 

you have given me during my research. Dr. Hrymak, you have given me valuable insight into 

the microinjection moulding process by sharing your extensive knowledge in this area. It has 

also been a pleasure working with Dr. Graham King and you are an inspiring surgeon and 

scientist. 

I would also like to thank those who have been mentors to me throughout my research. Dr. 

Dan Langohr, thank you for always being there to answer my questions and sharing your vast 

knowledge with me. You dedicate so much of your time to help others and it does not go 

unnoticed. Alana Khayat, thank you for leading the way in wear testing. You inspired me to 

continue the research of material stiffness on contact mechanics in the hopes of improving 

hemiarthroplasty implants. Shengtai Zhou, you provided me with technical support and 

guidance on the microinjection moulding process. You were always generous with your time 

and extremely helpful. 

I would like to thank my HULC and Chem Eng families. You are all very talented 

individuals and brought so much positivity to the lab and office every single day. You 

motivated me to work harder and strive for greatness. 

Thank you DSM Biomedical for supplying me with the Bionate pellets. This research could 

not have been possible without this biomaterial. To Clayton and Ian at University Machine 

Services, thank you for making my mould vision become a reality. I know it was not an easy 

task developing the mould but in the end, it even exceeded my own expectations. 

Finally, but certainly not last, I would like to thank my incredible and loving parents and 

sister. You encouraged me to keep moo-ving even through all the ups and downs that came 

with carrying out my research. I am so grateful that I got to share this journey with you and I 

am excited for the next chapter of my life. 



 

iv 

 

Table of Contents 

Abstract ................................................................................................................................ i	

Co-Authorship Statement .................................................................................................... ii	

Acknowledgments .............................................................................................................. iii	

Table of Contents ............................................................................................................... iv	

List of Tables .................................................................................................................... vii	

List of Figures .................................................................................................................. viii	

List of Abbreviations .......................................................................................................... x	

Chapter 1 ............................................................................................................................. 1	

1.1	 The Mechanical Function of Articular Cartilage .................................................... 1	

1.2	 Hemiarthroplasty ..................................................................................................... 3	

1.3	 Cartilage Wear ........................................................................................................ 5	

1.4	 Bionate .................................................................................................................... 6	

1.4.1	 Chemical Properties of Bionate .................................................................. 6	

1.4.2	 Mechanical Properties of Bionate ............................................................... 7	

1.4.3	 Bionate Implant Fabrication ....................................................................... 8	

1.4.4	 Successful Bionate Applications ................................................................. 9	

1.5	 Biomechanical Studies of the Hemiarthroplasty Articulation .............................. 10	

1.5.1	 Finite Element Modeling of Hemiarthroplasty Implants Against Cartilage
................................................................................................................... 10	

1.5.2	 Quantification of Cartilage Wear .............................................................. 11	

1.6	 Thesis Rationale .................................................................................................... 13	

1.7	 Objectives and Hypotheses ................................................................................... 14	

1.7.1	 Objectives ................................................................................................. 14	

1.7.2	 Hypotheses ................................................................................................ 14	

1.8	 Thesis Overview ................................................................................................... 15	



 

v 

 

1.9	 References ............................................................................................................. 16	

Chapter 2 ........................................................................................................................... 25	

2	 Implications of Low Stiffness Biomaterials on Contact Mechanics of Joint 
Hemiarthroplasty: A Finite Element Study .................................................................. 25	

2.1	 Introduction ........................................................................................................... 25	

2.2	 Three-Dimensional Finite Element Modeling ...................................................... 26	

2.2.1	 The Model ................................................................................................. 26	

2.3	 Results ................................................................................................................... 29	

2.4	 Discussion ............................................................................................................. 34	

2.5	 Conclusion ............................................................................................................ 35	

2.6	 References ............................................................................................................. 36	

Chapter 3 ........................................................................................................................... 40	

3	 Fabrication and Characterization of Bionate Implants ................................................. 40	

3.1	 Introduction ........................................................................................................... 40	

3.2	 Materials and Methods .......................................................................................... 41	

3.2.1	 Bionate Drying Conditions ....................................................................... 41	

3.2.2	 Microinjection Moulding Conditions ....................................................... 41	

3.3	 Thermal Analysis of Bionate ................................................................................ 46	

3.3.1	 Materials and Methods .............................................................................. 46	

3.3.2	 Results ....................................................................................................... 46	

3.3.3	 Discussion ................................................................................................. 49	

3.4	 Mechanical Properties of Bionate ......................................................................... 51	

3.4.1	 Materials and Methods .............................................................................. 51	

3.4.2	 Results ....................................................................................................... 53	

3.4.3	 Discussion ................................................................................................. 56	

3.5	 Conclusion ............................................................................................................ 56	



 

vi 

 

3.6	 References ............................................................................................................. 57	

Chapter 4 ........................................................................................................................... 59	

4	 The Effect of Low Moduli Implant Biomaterials on Early In Vitro Cartilage Wear ... 59	

4.1	 Introduction ........................................................................................................... 59	

4.2	 Materials and Methods .......................................................................................... 60	

4.2.1	 Implant Models ......................................................................................... 60	

4.2.2	 Tissue Acquisition and Preparation .......................................................... 62	

4.2.3	 Wear Testing ............................................................................................. 63	

4.2.4	 Wear Quantification .................................................................................. 63	

4.3	 Results ................................................................................................................... 65	

4.4	 Discussion ............................................................................................................. 70	

4.5	 Conclusion ............................................................................................................ 72	

4.6	 References ............................................................................................................. 73	

Chapter 5 ........................................................................................................................... 76	

5	 Conclusions and Recommendations ............................................................................ 76	

5.1	 Findings Related to Objectives & Hypotheses ..................................................... 76	

5.2	 Recommendations for Future Work ...................................................................... 77	

5.3	 Conclusions ........................................................................................................... 78	

Appendices ........................................................................................................................ 80	

6	 A. MeshLab Mesh Registration and MATLAB Volumetric Wear Calculation 
Protocols ....................................................................................................................... 80	

7	 B. Experimental Implant-Cartilage Contact Area Determined from an Experimental 
Casting Technique ........................................................................................................ 83	

Curriculum Vitae .............................................................................................................. 85	



 

vii 

 

List of Tables 

Table 2-1: Summary of FEA results for varying implant moduli ........................................... 30	

Table 3-1: Battenfeld Microsystem 50 operating conditions .................................................. 44	

Table 3-2: TGA data of Bionate-Low, Bionate-Mid and Bionate-High ................................. 50	

Table 3-3: DSC data of Bionate-Low, Bionate Mid and Bionate-High ................................. 51	

Table 4-1: Surface roughness average for the four implant materials tested .......................... 62	

 



 

viii 

 

List of Figures 

Figure 1-1: Cross sectional diagram of the collagen fiber architecture in articular cartilage ... 2	

Figure 1-2: Hemiarthroplasty procedure involving a radial head replacement. (A) Lateral 

radiograph of a pre-operative radial head fracture in the right elbow; (B) Post-operative 

radiograph showing the radial head implant, which articulates against the humeral 

capitellum13. .............................................................................................................................. 4	

Figure 2-1: Meshes and boundary conditions of the three-dimensional finite element model. 

All translation and rotation parallel to the cartilage surface were constrained. The pin was 

constrained in translation perpendicular to the cartilage surface at the guiding node. The 

subchondral bone guiding node was fully constrained. .......................................................... 27	

Figure 2-2: Contact area and peak contact stress for the four implant materials .................... 30	

Figure 2-3: Compressive stress profiles on the cartilage surface for various implant models: 

a) Bionate-Low b) Bionate-Mid c) Bionate-High and d) ceramic .......................................... 31	

Figure 2-4: Contact areas at the implant-cartilage interface for various implant models: a) 

Bionate-Low b) Bionate-Mid c) Bionate-High and d) ceramic .............................................. 32	

Figure 2-5: Von Mises stress distribution at the implant-cartilage interface for various 

implant models: a) Bionate-Low b) Bionate-Mid c) Bionate-High and d) ceramic ............... 33	

Figure 3-1: a) Image of the cavity plate of the mould insert b) image of the other side of the 

mould insert c) schematic of final moulded Bionate pin ........................................................ 43	

Figure 3-2: Schematic drawing of the microinjection moulding process: a) plasticization b) 

clamping c) moulding-holding and d) demoulding ................................................................ 45	

Figure 3-3: TGA mass change curves for Bionate-Low, Bionate-Mid and Bionate-High ..... 47	

Figure 3-4: TGA first derivative of mass change curve for Bionate-Low, Bionate-Mid and 

Bionate-High ........................................................................................................................... 47	



 

ix 

 

Figure 3-5: DSC analysis of Bionate-Low, Bionate-Mid and Bionate-High .......................... 48	

Figure 3-6: Schematic of Bionate implant under compressive loading within the Instron .... 52	

Figure 3-7: Mean (± one standard deviation) stress-strain curve for all three grades of Bionate

................................................................................................................................................. 53	

Figure 3-8: Mean (± one standard deviation) Young's moduli for Bionate-Low, Bionate-Mid 

and Bionate-High .................................................................................................................... 55	

Figure 4-1 Configuration of the pin-on-plate wear simulator: The Bionate pin was threaded 

on to the screw and coupling nut jig. A constant load of 30 N was applied to the cartilage 

surface via the implant model. ................................................................................................ 61	

Figure 4-2: Mean (± one standard deviation) volumetric wear for: a) Bionate-Low b) 

Bionate-Mid c) Bionate-High and d) ceramic. Bionate-High and ceramic produced 

significantly more wear than Bionate-Low and Bionate-Mid (p<0.001). .............................. 66	

Figure 4-3: Mean (± one standard deviation) volumetric wear after 50,000 cycles for each 

implant material. Volumetric wear significantly increased between 10,000 and 50,000 cycles 

(p<0.05). .................................................................................................................................. 67	

Figure 4-4: Mean (± one standard deviation) wear depth for: a) Bionate-Low b) Bionate-Mid 

c) Bionate-High and d) ceramic. Bionate-High and ceramic produced significantly deeper 

wear tracks in the cartilage plugs (p<0.001). .......................................................................... 69	

Figure A-1: MATLAB function to determine volumetric wear between unworn and worn 

surface meshes ........................................................................................................................ 82	

Figure B-1: Mean (± one standard deviation) contact area measurements from casting for the 

four implant materials ............................................................................................................. 84	

 

 

 



 

x 

 

List of Abbreviations 

DSC  Differential scanning calorimetry 

FEA  Finite element analysis 

FSS  Friction shear stress 

NMR  Nuclear magnetic resonance 

PCU  Polycarbonate urethane 

TGA  Thermogravimetric analysis 

UHMWPE Ultra high molecular weight polyethylene  



1 

 

Chapter 1  

1  

Overview: The treatise is on the subject of low modulus implant material selection for 

hemiarthroplasty, where the implant articulates against cartilage. This chapter provides 

an overview of the literature; with a focus on cartilage wear and using the biomaterial 

Bionate® as a proposed hemiarthroplasty implant material. It concludes with the 

objectives, hypotheses and thesis overview. 

1.1 The Mechanical Function of Articular Cartilage 

Throughout joint motion, cartilage is subjected to friction, repeated loading, and 

traumatic injury. Hence, an understanding of the relevant mechanical properties is an 

important component in the study of cartilage function. 

Cartilage is the viscoelastic and porous tissue that surrounds bone in synovial joints. 

Cartilage provides joints with essential functions which include load bearing, shock 

absorption, low friction, and wear resistance1. The biphasic nature of cartilage helps to 

establish these properties (Figure 1-1). Cartilage consists of a solid and a fluid phase. The 

fluid phase makes up 60-80% of cartilage and is mostly composed of water. The solid 

phase is composed of strong collagen fibrils and proteoglycan (protein) macromolecules 

and is porous and permeable1,2. Cartilage is comprised of four zones from the articulating 

surface to the underlying subchondral bone3: 

1) The superficial zone includes tightly packed collagen fibers that are aligned parallel to 

the articular surface. This zone makes up 10-20% of articular cartilage volume and 

protects deeper layers from shear stresses. 

2) The transitional zone includes proteoglycans and thicker collagen fibrils that are 

aligned obliquely. This zone represents 40-60% of articular cartilage volume and 

provides resistance to compressive forces. 
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3) The deep zone includes collagen fibrils that are aligned perpendicular to the articular 

surface. This zone represents 30% of articular cartilage volume and provides the greatest 

resistance to compressive forces. The deep zone contains the highest proteoglycan 

content and the lowest water concentration. 

4) The calcified zone is needed to secure cartilage to bone by anchoring the collagen 

fibrils of the deep zone to the underlying subchondral bone. 

 

Figure 1-1: Cross sectional diagram of the collagen fiber architecture in articular 

cartilage 

During compressive loading, the fluid phase carries most of the load and gradually flows 

out of the cartilage. The permeability of cartilage can be determined from a confined 

compression test and permeability is defined as the resistance to fluid flow through the 

cartilage matrix. Permeability is not constant through cartilage because of its multiphasic 

nature. The permeability is the highest near the joint surface and lowest in the deep zone 

where fibers are perpendicular to the articulating surface. Cartilage can withstand high 

compressive loads and the associated high shear and compressive stresses. Unconfined 

and confined compression testing is commonly used to evaluate the biomechanical 
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properties of articular cartilage4. The aggregate modulus of cartilage ranges from 0.50 to 

0.90 MPa and the Young’s modulus ranges from 0.45 to 0.80 MPa5. Another study 

reported a Young’s modulus of 1.79 MPa6. Indentation tests have been used to determine 

the equilibrium and instantaneous Poisson’s ratio of cartilage to be 0.46 and 0.50, 

respectively. The coefficient of friction for cartilage has been studied under static and 

dynamic loading. Higher values of 0.2-0.4 have been recorded for static loading over 

several hours, however under dynamic loading, the coefficient of friction ranges from 

0.002-0.2007. 

1.2 Hemiarthroplasty 

Hemiarthroplasty procedures replace the diseased or damaged side of the joint with an 

implant to maximize bone preservation while maintaining more native anatomy than total 

joint replacement8. These procedures are typically performed due to pain and disability 

arising from focal cartilage erosion or from fractures resulting in an un-repairable joint. 

Hemiarthroplasty is preferred over total arthroplasty in fractures because it simplifies 

surgical procedure, preserves native bone and reduces costs9,10. As an example, at the 

elbow, hemiarthroplasty is often employed as an option to treat complex radial heal 

fractures because only one articulating surface in the joint is damaged (Figure 1-2)11. The 

fractured radial head is removed and replaced with a metallic implant, which articulates 

against the native capitellum. The goals of radial head hemiarthroplasty are to restore 

elbow stability and preserve elbow motion12. Clinical studies show promising outcomes 

for providing a functional range of motion and pain relief in hemiarthroplasty patients11. 
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Figure 1-2: Hemiarthroplasty procedure involving a radial head replacement. (A) 

Lateral radiograph of a pre-operative radial head fracture in the right elbow; (B) 

Post-operative radiograph showing the radial head implant, which articulates 

against the humeral capitellum13. 

Even though hemiarthroplasty procedures have been successful and have advantages as 

noted, they have been known to cause cartilage damage over time. It has been suggested 

by van Riet et al. that capitellar erosion occurs from metal radial head implants for the 

elbow. This is, in all likelihood due to the fact that the stiffness of the metallic implant is 

greater than that of cartilage. Hence, the contact area between the radial head and 

capitellum is decreased upon implantation relative to the native state14. Contact area in 

the radiocapitellar joint has been reported to decrease by two-thirds following metallic 

radial head arthroplasty which resulted in greater contact pressures within the joint15. 

Increased cartilage degradation is associated with elevated and unnatural contact 

pressures16. One mechanism that relates to cartilage degradation is the secretion of 

degenerative enzymes in articulating cartilage. These degenerative enzymes deteriorate 

the cartilage causing loss in elasticity and loss of surface integrity17. 

In addition to metals, other materials that have been proposed and investigated to varied 

extents for hemiarthroplasty implants are polyvinyl alcohol hydrogels18 and 

polyurethane19. The Young’s moduli of these materials are 0.7 MPa and 22 MPa, 

respectively. Polyvinyl alcohol hydrogels in as-gelled form have a high water content 
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which causes the hydrogels to lack the toughness and strength to serve as a cartilage 

substitute material20–22. Thermal annealing has been used to strengthen hydrogels but by 

doing so decreases the lubricity of the hydrogel because the pores collapse within the 

hydrogel which causes damage to adjacent cartilage23. Overall, hydrogels have less than 

desirable properties for implantation but polyurethane is a more desirable 

hemiarthroplasty material because it can reduce contact stress resulting in reduced levels 

of cartilage wear19. 

1.3 Cartilage Wear 

Wear is defined as the removal of material from the surface due to chemical or 

mechanical action between the contact surfaces7. Cartilage wear is a challenge to measure 

because the water content and biphasic properties vary in cartilage. Water content in the 

cartilage affects both geometric and gravimetric wear measurements. Studies have found 

changes in surface topography to be a better indication of surface damage caused by wear 

compared to gravimetric wear measurements7. 

Weight bearing joints experience forces up to ten times body weight under normal 

loading conditions. These forces produce contact stresses in the range of 5-10 MPa24. The 

compressive stress range of 15-20 MPa is the critical threshold stress that causes damage 

to the collagen fiber matrix in cartilage and causes chondrocyte death24. Elevation of 

contact stress has been shown to increase friction at the implant-cartilage interface and 

causes an increase in cartilage wear. Friction shear stress (FSS) has been an important 

parameter in cartilage tribology studies and has demonstrated a very strong correlation 

between FSS and volume of cartilage wear25,26. FSS is the product of contact stress and 

coefficient of friction. 

With respect to hemiarthroplasty, contact stress was determined experimentally for three 

polyurethane tibial hemiarthroplasty bearings of varying stiffness27. The two softer 

polymers produced contact stresses between 5 and 6 MPa. The higher stiffness polymer 

produced peak contact stresses around 16 MPa19. The polymers had much lower contact 

stress values compared to the conventional hemiarthroplasty material of stainless steel. 

Stainless steel produced the highest level of contact stress of 23 MPa19. Decreasing the 
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Young’s moduli of the polyurethane tibial hemiarthroplasty bearings resulted in reduced 

levels of contact stress, therefore reducing levels of opposing cartilage wear19. 

1.4 Bionate 

The need to investigate Bionate®, (DSM Biomedical, California, USA), a medical-grade 

polymer, in hemiarthroplasty applications is important because currently the stiffness of 

hemiarthroplasty implants is much higher than human cartilage. In fact, some early finite 

element work from our laboratory suggests that the modulus of an implant needs to be at 

least below 500 MPa before any discernible effects on cartilage stress and contact area 

occur28. Hence, a low stiffness polymer such as Bionate has the potential to produce less 

cartilage wear on the native articulating surface while still maintaining implant longevity. 

Bionate demonstrates durability, biostability, flexibility, toughness, and biocompatibility 

making it a promising material for future hemiarthroplasty applications. In light of this, 

the work herein focuses on Bionate. 

1.4.1 Chemical Properties of Bionate 

Bionate is a polycarbonate urethane (PCU). Polycarbonate urethanes are synthesized at 

the molecular level using a hydroxyl terminated polycarbonate, an aromatic diisocyanate 

and a chain extender29. Bionate is specifically made from poly(hexamethylene 

carbonate), methylene di(p-phenyl isocyanate) and butanediol. The polycarbonate is the 

soft segment of the polymer and provides stability. The polyurethane is the hard segment 

of the polymer and provides strength30. The chain extender cross-links the two segments 

together to create Bionate. For example, Bionate 80A has a hard-to-soft segment ratio of 

35/65 (wt/wt)30. 

Bionate has the ability to imitate one of the roles of natural cartilage by offering a high 

degree of compliance to promote fluid-film lubrication31. Previously conducted wear 

studies have shown Bionate to have superior wear and friction characteristics compared 

to traditional metal against ultra high molecular weight polyethylene (UHMWPE) 

devices when considered for total joint replacement systems32. 
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Bionate has outstanding ageing and hydrolysis resistance. Bionate gets its high oxidative 

stability from its chemical structure, the proximity of the hydrocarbon groups to the 

carbonate linkages29. Oxidative stability helps prevent irreversible changes from 

occurring in the polymer’s properties, known as ageing. In-vitro studies have assessed 

Bionate’s resistance to degradation mechanism such as environmental stress cracking and 

metal ion oxidation33,34. 

1.4.2 Mechanical Properties of Bionate 

The hardness of Bionate is measured on the Shore A or Shore D scale, where A is softer 

than the D scale. The softer grades of Bionate are 80A and 90A. The harder grades of 

Bionate are 55D, 65D, and 75D. Polycarbonate urethane elastomers are considered 

“cushion bearing” in orthopaedic implant applications19. PCU has high abrasion and tear 

resistance and flexural fatigue life35. 

Coefficient of friction testing (using ASTM D1894) has been conducted on Bionate 80A, 

55D, and 75D with the kinetic coefficient of friction being 1.52, 0.81, and 0.64, 

respectively36. Bionate 80A has a coefficient of friction greater than 1 which means the 

frictional force is greater than the normal force. 

Ghaill et al.37 conducted volumetric compression testing of Bionate 80A and Bionate 75D 

to determine the bulk modulus, Young’s modulus, and Poisson’s ratio. For Bionate 80A, 

over 10 loading cycles, the bulk modulus increased from 497.1 MPa to 524.2 MPa and 

the Young’s modulus increased from 22.19 MPa to 23.93 MPa. The Poisson’s ratio was 

0.49. For Bionate 75D, over 10 loading cycles, the bulk modulus increased from 292.9 

MPa to 472.3 MPa and the Young’s modulus increased from 131.1 MPa to 327.6 MPa. 

The Poisson’s ratio ranged decreased from 0.43 to 0.3837. Bionate 80A has also been 

reported to have a Young’s modulus of 19.2 MPa38 and ranging in Young’s modulus 

between 28 and 30 MPa30.  

The Young’s modulus of Bionate 55D has been documented. Simmons et al. studied 

unstrained non-implanted controls that were compared to samples that were implanted 

into an ovine model for 12 months39. Tensile mechanical testing was conducted to 
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determine the Young’s modulus of implanted and non-implanted samples. The non-

implanted samples were unstrained while the implanted samples were strained at 150% 

for the 12-month testing period. The Young’s modulus for the implanted samples was 

134.8 ± 6.3 MPa. The Young’s modulus for the non-implanted controls was 39.2 ± 3.2 

MPa39. This data indicated that the implanted samples were less extensible and flexible 

when compared to the non-implanted samples, which has been reported from other 

studies. This change in elastic modulus is attributed to a combination of chain orientation, 

stress relaxation, and strain-induced crystallization within the polymer40. 

1.4.3 Bionate Implant Fabrication 

Injection moulding has been used to mould Bionate for several total arthroplasty 

applications including shoulder glenoid components31, hip acetabular cups41, knee tibial 

bearing inserts42, and spinal implants43. 

Bionate is packaged in polymer pellet form. Moisture level within the pellets is a key 

factor before injection moulding because it can impact the quality and ability to be 

processed into moulded parts. To reduce pellet moisture level, the pellets are dried before 

being moulded into the desired implant shape. 

The injection moulding process can be categorized into four stages: plasticization, 

clamping, moulding-holding, and demoulding44. Raw solid polymer pellets are placed 

into the hopper of the injection-moulding machine. The pellets travel through the hopper 

and into the barrel where plasticization occurs. Heat is supplied to the pellets by heater 

bands around the barrel and from the mixing action that occurs from the screw rotating 

within the barrel. The pellets are turned into a continuous liquid melt based on 

mechanical and thermal energy45. The screw component produces homogenous and 

efficient plasticization. The melted polymer then travels into a metering barrel to a preset 

volume to help create consistent processing through heat transfer and melt flow. The 

mould is then pressed together and the injection plunger forces the metered melt into the 

injection unit46. Cooling time occurs before the mould can open and release the moulded 

part. 
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Geary et al. used injection moulding to create rectangular Bionate 80A and Bionate 75D 

tiles29. Gel permeation chromatography was used to determine the optimal drying 

temperature of the raw Bionate pellets and the optimal moulding temperature. Optimal 

drying was achieved after 12 hours in a fan-assisted oven at 80°C. Moulding 

temperatures were performed at 200, 220, and 240°C but for optimal moulding, the 

temperature should not exceed 220°C29. 

1.4.4 Successful Bionate Applications 

One of the major causes of failure in joint replacements is implant wear. Wear of implant 

materials such as metals and UHMWPE cause wear particles/wear debris which can lead 

to bone resorption and loosening of the implant. UHMWPE is used in total joint 

arthroplasty in orthopaedic and spine implants because of its resistance to wear. 

Polyurethane has been used in high resiliency applications such as intervertebral disc 

replacement implants and implantable artificial heart valves because of its mechanical 

and biocompatibility properties35. Polycarbonate urethane has been recommended as an 

alternative bearing material for the acetabular cup35. Wear particles of polycarbonate 

urethane are less inflammatory compared to UHMWPE and therefore potentially less 

disruptive to bone-implant fixation and other side effects47,48. Some authors speculate that 

this difference is caused by PCU being hydrophilic and UHMWPE is hydrophobic. In a 

study conducted by Geary et al., lower wear rates were observed for PCU compared to 

UHMWPE31. 

Studies have been conducted to evaluate polycarbonate urethane acetabular cup wear 

performance. The PCU cups were tested in an ovine arthroplasty model and showed the 

effectiveness of PCU biostability over periods as long as 48 months. The cups had no 

apparent changes in material or evidence of degradation49–51. Another study showed 

polyurethane to be superior over UHMWPE in knee prosthesis with cement fixation 

during wear, friction and creep testing52. A study conducted by Smith et al. used 

gravimetric analysis to measure the wear of five polyurethane acetabular cups and 

calculated the average wear rate as 12.0 ± 3.6 mm3/million cycles. Creep rather than wear 

caused the large spread in the data (calculated standard deviation values)52. Carbone et al. 

conducted an in vivo study to investigate the wear of PCU bearing in an ovine total hip 
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arthroplasty model for up to four years50. The study found no surface damage or 

deterioration of the PCU compliant layer49,50. 

Dynamic compression fatigue tests were performed on Bionate compliant layer 

acetabular cups and tibial bearings, which were positioned in fixtures attached to a 

servohydraulic fatigue-testing machine. Bionate 75D was used for the backing of the two 

components and Bionate 80A was used as the compliant layer. The tests were performed 

under 14.4×106 cycles and caused no visible damage or debonding between the Bionate 

80A and Bionate 75D interface. The study concluded that using soft and hard PCU 

materials for acetabular components and tibial bearings are reliable and strong enough to 

withstand robust mechanical testing53. 

There is less understanding on the effectiveness of PCU, specifically Bionate, as a 

hemiarthroplasty material because most of the studies have been on total joint 

replacement. PCU has produced favourable results as an alternative implant material 

when articulating against another material such as metal, but it is still unclear how PCU 

articulates against native cartilage. 

1.5 Biomechanical Studies of the Hemiarthroplasty 
Articulation 

1.5.1 Finite Element Modeling of Hemiarthroplasty Implants 
Against Cartilage 

In vivo contact stresses and strains are difficult to measure experimentally and often 

inaccurate in synovial joints54. Since the 1970s computational simulations have helped to 

effectively determine contact stresses, contact areas, and strains in orthopaedic 

biomechanical applications55. Finite element analysis (FEA) involves discretizing 

complex, continuous geometries into smaller elements or meshes. The elements are 

solved and assembled to determine local strains and stresses of the elements. Finite 

element analysis has been used to characterize articular contact mechanics in the 

shoulder56, the elbow57–60, the hip61,62, the knee63,64, and amongst others. 
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Finite element analysis has been used to characterize mechanical responses of structures. 

Articular cartilage has been successfully modeled using a finite element model. Cartilage 

was first modeled as a linear elastic model but has evolved to biphasic analytical models. 

Early analytical models of deformation of cartilage were single phase, linear elastic solids 

where time dependent behaviour was not accounted for. Unfortunately this is not an ideal 

representation for all physiological loading65. Instantaneous response of hyperelastic 

material has been shown to have the equivalent response of biphasic material under fast 

loading conditions61 and therefore articular cartilage is better represented when modeled 

as an incompressible, neo-Hookean hyperelastic material61,62,66,67.  

Cilingir et al., studied contact pressure in a hemiarthroplasty hip joint using three-

dimensional anatomic, two-dimensional axisymmetric and three-dimensional 

axisymmetric finite element models68. It was concluded that axisymmetric models have 

good agreement with anatomic models and therefore can be used for contact mechanics 

studies and require less computational time68. 

Polycarbonate urethane has been modeled as an incompressible, Mooney-Rivlin 

hyperelastic material69,70. The finite element model was validated by comparing the tibial 

plateau contact pressures measured in in vitro cadaveric knee experiments to the 

calculated contact pressures determined from the finite element analysis. Therefore, finite 

element analysis can be used to simulate hemiarthroplasty implant-cartilage contact 

mechanics and can enhance in vitro wear results by determining stress distributions, 

contact area, contact pressure, and peak contact stress. 

1.5.2 Quantification of Cartilage Wear 

McGann et al. studied methods to assess in vitro wear of articular cartilage by conducting 

wear testing of cartilage against stainless steel discs71. The three methods they used were: 

assessing collagen wear in the cartilage specimen by using a modified wear factor, 

quantifying surface damage by making the damage visible by India ink, and measuring 

changes in surface roughness71. During wear testing, the bovine specimens released 

cartilage wear debris into the lubricating bath. Liquid chromatography was used to 

measure changes in protein content of the lubricating bath. The wear factor (mg/N-m) of 
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each specimen was determined by dividing the mass of cartilage removed (amount of 

hydroxyproline in the lubrication bath) by the load applied during wear testing and the 

total length the specimen traveled within the pin-on-disc wear machine. Surface 

roughness of the cartilage surface was measured before and after wear testing, and was 

found to be an ineffective measure of cartilage degradation. The results showed a general 

trend of increasing surface roughness after wear testing but the surface roughness did not 

correlate with the modified wear factor. Changes in surface morphology of the cartilage 

may not be captured by the surface roughness measurement71. However, India ink was 

found to be an effective, inexpensive and quick technique for evaluating cartilage 

degradation. 

Lizhang et al. studied the effect of contact stress and area on cartilage wear in a 

hemiarthroplasty application. The study showed an increase in contact stress when the 

contact area was decreased72. In another investigation, Lizhang et al. studied the effect of 

contact stress and area, sliding speed and distance, and loading time on cartilage 

deformation, friction and wear. Bovine cartilage pins were reciprocated against cobalt 

chromium alloy plates to mimic hemiarthroplasty articulation. Cartilage wear increased 

with sliding speed and distance, and contact stress7. 

Tribological simulation was developed to determine wear and friction properties of 

bovine knee articular cartilage against cartilage and cartilage against stainless steel by 

applying physiological loads and motions to the knee joints. Joint contact stress was 

measured using pressure sensitive Fuji film. The film was placed between the 

hemiarthroplasty material (stainless steel) and cartilage and the pendulum friction 

simulator applied the required load73. The study concluded that under high loading 

conditions, coefficient of friction is not a good indicator of cartilage wear, but did 

demonstrate that contact stress is an important factor influencing cartilage wear. Contact 

stress at the interface was much higher for cartilage-stainless steel interaction and 

resulted in more cartilage wear when compared to cartilage-cartilage interaction. 

Recent work in our laboratory by Khayat, involved quantifying cartilage wear by 

comparing three-dimensional scans of articular cartilage taken before and after pin-on-
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disc wear testing13. India ink was added to the cartilage surface to help visualize the wear 

track. The pre- and post- wear scans were aligned in MeshLab and a custom inter-surface 

distance MATLAB algorithm was used to determine volumetric wear. The distance 

between the vertices of the triangular meshes determined volumetric wear. The unworn 

regions of the mesh had a distance of zero because the vertices of the aligned meshes had 

the same coordinates. The distance between corresponding points on the registered 

surfaces determined the worn regions. This method was deemed an effective non-contact 

imaging protocol to quantify cartilage surface and wear damage. 

1.6 Thesis Rationale 

Hemiarthroplasty is a minimally invasive procedure that maximizes the preservation of 

native anatomy and restores joint kinematics, function and stability. While these 

procedures are initially highly successful, cartilage wear leads to clinical failures with 

longer follow-up. To optimize load transfer and improve clinical outcomes, 

hemiarthroplasty implants must improve articular contact mechanics by decreasing 

contact stress and therefore minimizing articular cartilage wear at the implant-cartilage 

interface. 

The literature suggests that a more compliant material should be used in hemiarthroplasty 

implants because they may reduce cartilage degeneration19,74,75. More compliant implant 

materials have shown to produce less wear but the relationship between implant stiffness 

and articular cartilage damage remains unclear. It is not well known whether there is a 

gradual increase in articular cartilage wear as implant stiffness increases, or if there is a 

threshold level where contact mechanics shift to cause harm to the cartilage, particularly 

for the lower modulus materials such as Bionate. 

In view of the foregoing, the success of a more compliant hemiarthroplasty implant using 

Bionate was studied. Contact area at the implant-cartilage interface will be compared 

between in vitro wear tests and computational finite element analysis. These studies were 

conducted to explain the relationship between low stiffness biomaterials and cartilage 

wear. In vitro studies utilized a pin-on-plate wear simulator that reciprocated low 

stiffness hemiarthroplasty implant models against fresh frozen bovine articular cartilage 
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explants. Volumetric wear was determined from topographical changes in the cartilage 

surfaces. Finite element simulations will be used to determine contact stresses and 

contact area at the implant-cartilage interface. 

1.7 Objectives and Hypotheses 

1.7.1 Objectives 

1. To develop and employ a finite element model to assess the effect of low modulus 

implants in the range of 0.015-0.288 GPa on cartilage contact area and peak 

contact stress. 

2. To develop an efficient and effective way to fabricate Bionate hemispherical-

tipped implants and to characterize the chemical and mechanical properties of 

Bionate implants. 

3. To quantify the effect of varying Bionate implant stiffness on early in vitro 

cartilage wear. 

1.7.2 Hypotheses 

1. Finite element model will show an increase in contact area and a decrease in peak 

contact stress at the implant-cartilage interface with a decrease in implant moduli 

(Chapter 2). 

2. It is hypothesized that decreasing the implant stiffness will reduce wear on the 

adjacent cartilage because of improved contact mechanics (Chapter 4). 
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1.8 Thesis Overview 

The following chapters represent a comprehensive collection of computational and 

experimental studies to investigate the effect of low modulus biomaterial (viz. Bionate). 

A finite element study was initially conducted to determine the effect of low stiffness 

material on contact mechanics (contact area and peak contact stress). Chapter 3 focuses 

the fabrication of Bionate 80A (referred to as Bionate-Low in the following chapters), 

55D (Bionate-Mid), and 75D (Bionate-High) implants and chemical and mechanical 

characterization of the various implants. Chapter 4 presents the effect of Bionate implants 

on early in vitro cartilage wear using a pin on cartilage model. Chapter 5 summarizes the 

conclusions and direction of future research. 
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Chapter 2  

2 Implications of Low Stiffness Biomaterials on Contact 
Mechanics of Joint Hemiarthroplasty: A Finite Element 
Study 

Overview: This chapter includes a three-dimensional finite element simulation to 

investigate the effect of low range implant moduli on implant-cartilage contact area and 

peak contact stress. A portion of this work was presented at the 2016 Annual Meeting of 

the Orthopaedic Research Society (Orlando), at the 2016 Canadian Bone & Joint 

Conference and at the 2016 Annual Meeting of the Canadian Orthopaedic Research 

Society (Quebec). 

2.1 Introduction 

In vitro biomechanical measurement techniques of joint articulations can be difficult to 

execute and are potentially inaccurate; therefore finite element models are favourable as 

they are non-invasive alternatives to evaluating contact mechanics1. Finite element 

analysis outcomes include contact stress, contact area and stress distributions for intact 

and replaced joints. The surface of an anatomical (viz. bone and cartilage) structure can 

be discretized and material properties can be assigned to site-specific elements. Contact 

mechanics at any location within the anatomical structure surface can subsequently be 

determined, typically at an articulation including an implant if desired. 

Finite element simulations have accurately modeled articular cartilage as an anistropic, 

biphasic material2–4. Simpler models have also been successfully reported and are able to 

reduce the computational expense of the biphasic models. These simpler models use 

hyperelastic laws and assign a single, non-linear phase to the cartilage5–8. Three-

dimensional computed tomography reconstructions are commonly used in finite element 

applications to account for the elasticity and non-homogenous properties of bone and 

associated structures such as cartilage by assigning regional properties based on image-

based intensity metrics (i.e. Hounsfield numbers)9,10. 
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With respect to examining the effect of implant modulus in hemiarthroplasty systems, 

only limited studies are available. Johnson et al., assessed the effect of implant modulus 

in the range of 0.5-230 GPa and showed that the ‘theoretical soft’ material (Young’s 

modulus of 0.5 GPa) had a significant but small effect on contact area and peak contact 

stress11. The data suggested that post-operative joint contact mechanics would be 

optimized if the implant stiffness were reduced even lower than the 0.5 GPa material 

investigated in the study. Khayat created a two-dimensional axisymmetric finite element 

model to simulate static pin-on-plate loading for materials with stiffness in the range of 

~0.70-200 GPa12. The results showed no differences in contact stresses among implant 

materials and suggested a Young’s modulus well below 0.69 GPa may have a more 

noticeable effect on cartilage contact mechanics. 

In view of the foregoing, the objective of the current study was to conduct a three-

dimensional finite element simulation to investigate the effect of low range (down to 

0.015 GPa) hemiarthroplasty implant moduli on implant-cartilage contact mechanics, 

with a focus on contact area and contact stress. 

2.2 Three-Dimensional Finite Element Modeling 

2.2.1 The Model 

A three-dimensional model constructed in ABAQUS v6.12-2 (Simula Corp., Providence, 

RI, USA) as shown in Figure 2-1, was employed. The radius of curvature of the implant 

was 4.7 mm. The implants were meshed using linear hexahedral elements with an 

average global edge length of 0.12 mm. The implant consisted of 96,768 linear 

hexahedral elements, the cartilage layer consisted of 39,896 linear hexahedral elements, 

and the bone consisted of 265,148 tetrahedral elements. The total degree of freedom for 

the three dimensional model was therefore 613,695. Peak contact stress and contact area 

were measured under a constant load of 30 N. 
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Figure 2-1: Meshes and boundary conditions of the three-dimensional finite element 

model. All translation and rotation parallel to the cartilage surface were 

constrained. The pin was constrained in translation perpendicular to the cartilage 

surface at the guiding node. The subchondral bone guiding node was fully 

constrained. 
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The cartilage geometry was assigned a neo-Hookean hyperelastic model in order to 

simulate the mechanical response cartilage exhibits during equilibrium (C10= 1.79)5,13. 

The cartilage layer was assigned a thickness of 2.5 mm (based on experimental 

measurements12) and consisted of three layers of linear hexahedral mesh with global 

average edge lengths of 0.15 mm. This type of mesh geometry was used because it 

allowed the elements to compress without reducing their volume. 

The subchondral bone geometry was modeled using an elastic material model and was 

assigned a Young’s modulus of 109 MPa and a Poisson’s ratio of 0.314,15. The bone 

geometry consisted of tetrahedral mesh elements with edge lengths of 0.1 mm. 

All mesh sizes were deemed adequate by mesh convergence studies. 

2.2.1.1 Implants 

To investigate the effect of material stiffness on contact mechanics, the implants were 

assigned mechanical properties based on literature values. Bionate-Low was assigned 

Mooney-Rivlin hyperelastic properties (C10= 2.912 and C01= -1.025)16,17. Bionate-Mid 

was modeled elastically with a Young’s moduli of 0.039 GPa and Poisson’s ratio of 

0.4518. Bionate-High was modeled elastically with a Young’s moduli of 0.288 GPa and 

Poisson’s ratio of 0.3919. Ceramic was modeled elastically with a Young’s modulus of 

380 GPa and Poisson’s ratio of 0.2920,21. Ceramic was chosen to represent a high modulus 

implant material for comparison.  

2.2.1.2 Boundary and Loading Conditions 

An assembly was created from the cartilage and subchondral bone models. The two parts 

were mated using a rigid pin constraint and constrained rotationally and axially. The 

implant was allowed to move in the plane perpendicular to the cartilage-subchondral 

bone assembly because the pin was also constrained rotationally and axially. A force of 

30 N was applied along the superior-inferior y-axis of the pin model, to press the pin 

against the cartilage surface to simulate the loading configuration in in vitro pin-on-plate 

wear tests. 
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2.2.1.3 Outcome Variables 

Contact mechanics data was obtained from nodes in the cartilage layer at the implant-

cartilage interface. The model output variables were peak contact stress and contact area. 

The contact area was determined from the region between the nodes where the contact 

pressure was greater than zero. 

2.3 Results 

The peak contact stress and contact area determined by the finite element model for the 

four different Young’s moduli values are summarized in Table 2-1. Peak contract stress 

and contact area are also displayed graphically for the four-implant materials in Figure 

2-2. Overall, the data shows peak contact stress increases and contact area decreases as 

the Young’s moduli of the implant material increases. The data also suggests that the 

response of the three Bionate materials is not linear. Although this cannot be stated 

without statistical support, it was interesting to note that Bionate-High resulted in contact 

mechanics that were close to the very stiff ceramic implant modeled, despite a very large 

difference in modulus (~1300%). 
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Table 2-1: Summary of FEA results for varying implant moduli 

Implant Material Peak Contact Stress [MPa] Contact Area [mm2] 

Bionate-Low 4.03 12.71 

Bionate-Mid 6.59 8.30 

Bionate-High 8.65 6.84 

Ceramic 9.27 6.17 

 

 

 

Figure 2-2: Contact area and peak contact stress for the four implant materials 
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Figure 2-3 shows the compressive stress profiles on the cartilage surface for each implant 

material, which increases as the Young’s moduli of the implant increases. 

a) 

 

b) 

 

 

c) 

 

d) 

 

Figure 2-3: Compressive stress profiles on the cartilage surface for various implant 

models: a) Bionate-Low b) Bionate-Mid c) Bionate-High and d) ceramic 
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Figure 2-4 shows the contact area between each implant and cartilage, which decreases as 

the Young’s moduli of the implant increases. 

a) 

 

b) 

 

c) 

 

d) 

 

Figure 2-4: Contact areas at the implant-cartilage interface for various implant 

models: a) Bionate-Low b) Bionate-Mid c) Bionate-High and d) ceramic 
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Figure 2-5 shows the Von Mises stress distribution at the implant-cartilage interface for 

each implant material, which increases as the Young’s moduli of the implants increases. 

a) 

 

b) 

 

 

c) 

 

d) 

 

Figure 2-5: Von Mises stress distribution at the implant-cartilage interface for 

various implant models: a) Bionate-Low b) Bionate-Mid c) Bionate-High and d) 

ceramic 
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2.4 Discussion 

The study was used to help gain insight into how Bionate interacts with cartilage for 

hemiarthroplasty applications. Specifically, the effect of low range (down to 0.015 GPa) 

of hemiarthroplasty implant moduli on contact mechanics using a finite element model 

was conducted. In general, it was shown that a less stiff material has the ability to deform 

under compressive forces therefore increasing the contact area and conformity between 

the implant-cartilage interfaces which results in a decrease in peak contact stress. The 

findings herein certainly demonstrated these trends. Lower modulus biomaterials have 

reduced peak contact stress values compared to commonly used implant materials, which 

suggests that these materials may produce less cartilage degradation22. Decreasing 

hemiarthroplasty stiffness from 380 to 0.015 GPa increased contact area by 69% and 

decreased peak contact stress by 79%. When comparing Bionate-Low to Bionate-High, 

the contact area increases by 60% as the stiffness of the material decreases. Both 

materials are much softer than currently used implant materials but the results suggest 

that Bionate-High may not be soft enough to improve contact mechanics. Literature has 

shown Bionate-Low to have a lower peak contact pressure compared to metal when used 

as a bearing surface in finite element hip arthroplasty implant models. When compared to 

a healthy hip joint model, the Bionate-Low had similar peak contact pressures16. Contact 

stresses for intact joints have been reported in the range of 0.5 to 6 MPa23,24. Pre-

operative and post-operative contact stress has been measured clinically for various 

hemiarthroplasty procedures (i.e. shoulder, elbow, and hip). Contact stress is increased 

within the joint after the procedure because the implant reduces the contact area, 

therefore causing more stress across the articulating surface25–28. Thus, this explains why 

the stress levels in this study were higher than those of native joints. 

As regards the modeling employed, there are some limitations. First, creep (time 

dependent behaviour under compressive loading) of the Bionate was not modeled. 

Flanagan studied the compressive creep behaviour of Bionate-Low and Bionate-High in 

in vitro conditions for 408 hours29. The study found that there was noticeably less creep 

resistance in Bionate-Low compared to Bionate-High. Creep deformation increased in 

both materials as the temperature increased from room temperature to 37°C. Creep 
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deformation was also compared when the specimens were dry versus lubricated in bovine 

calf serum. Creep deformation increased with lubrication29. Second, only one implant 

geometry (i.e. radius of curvature) was modeled. Khayat studied radius of curvatures 

between 4.7 mm and 11.7 mm in a similar implant finite element study12. The study 

showed there is a threshold at which stresses are less sensitive to radius of curvature 

between the values of 7.25 mm and 9.35 mm. Also, approximations of material properties 

and behaviour under compressive loading were made. The material properties assigned to 

the models were taken from literature not directly from experimental measurements. 

Even though cartilage consists of fluid and solid components, which both distribute loads, 

this model only accounts for the bulk properties of cartilage and neglects fluid flow 

through the biphasic poroelastic medium. The FEA model simulated static loading 

instead of linear reciprocal sliding that will be investigated in the in vitro wear study 

ahead in Chapter 4. 

2.5 Conclusion 

The decrease in contact stress levels shown by the FEA conducted herein provides insight 

into the future in vitro wear study where a decrease in volumetric wear should be 

observed as the stiffness of the material decreases. The Bionate-Low model showed the 

lowest peak contact stress and hence it can be postulated that this material would produce 

the least amount of cartilage wear. Within the range of implant material moduli 

examined, a higher contact area and lower peak contact stress were observed as the 

Young’s modulus value decreased which supports that a material with similar 

characteristics to cartilage improves contact mechanics and should decrease cartilage 

wear. The experimental performance of these different Bionate formulations is provided 

in Chapter 4. 
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Chapter 3  

3 Fabrication and Characterization of Bionate Implants 

Overview: This chapter describes the fabrication of Bionate-Low, Bionate-Mid and 

Bionate-High implants using microinjection moulding. TGA, DSC and compressive load 

testing characterized the chemical and mechanical properties of the implants. 

3.1 Introduction 

As previously discussed in Chapter 1 (Section 1.4.3), injection moulding has been used to 

mould Bionate for several total arthroplasty applications. The injection moulding process 

involves four stages: plasticization, clamping, moulding-holding, and demoulding1. The 

process melts polymer pellets and then the mould is pressed together to allow the melted 

polymer to be injected into a mould cavity (the desired mould shape). The polymer is 

giving time to cool before the moulded part is released. Bionate implants have been 

created with a Bionate 75D (Bionate-High) backing and then over moulded with a 

Bionate 80A (Bionate-Low) articulating layer for hip acetabular cups2, shoulder glenoid 

components3,4, and knee tibial bearing inserts5. A newer type of injection moulding that 

has been established is microinjection moulding. Microinjection moulding is a more 

efficient process for large-scale fabrication and is used to produce thermoplastic polymer 

micro-components for biomedical, electronic, and microelectromechanical systems1,6. 

Chemical analysis is performed on materials to determine chemical properties such as 

thermal stability, phase change, water absorption, and glass transition temperature. Two 

commonly used techniques to characterize chemical properties of a material are 

thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). TGA is 

used to measure the change in mass of the polymer as the temperature is increased. It 

gives insight into when decomposition of the material occurs. DSC determines the 

change in the amount of heat required to increase the temperature of a material. This 

technique is used to determine physical transformation of the polymer. For example, 

glass transition temperature, phase change and melting of crystalline regions can be 

determined using DSC7. 
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Mechanical testing is performed on materials to determine mechanical properties such as 

elasticity (Young’s modulus), elongation, fatigue limit, fracture toughness, and tensile 

strength.  Mechanical properties of interest for joint replacements are Young’s modulus 

and strength7,8. The manufacturer of Bionate, DSM Biomedical, has previously measured 

the hardness of this material. ASTM D2240 durometers are used to measure the hardness 

of Bionate and classify the material into two scales, Shore A and Shore D scale9. The 

durometer applies a given force to the material and measures the depth of indentation. 

Both scales result in a value between 0 and 100, where higher numbers indicate a harder 

material. The A scale is used for softer plastics, while the D scale is used for harder 

plastics. Bionate-Low is categorized by the A scale with a value of 80A. Bionate-Mid and 

Bionate-High are categorized by the D scale with values of 55D and 75D, respectively. 

Ghaill et al., used cyclic volumetric compression testing at 37.5°C and 0.5 mm/min to 

determine the Young’s moduli of Bionate-Low and Bionate-High8. The mean Young’s 

modulus of Bionate-Low over 10 loading cycles was 23.24 MPa. The mean Young’s 

modulus of Bionate-High over 10 loading cycles was 271.5 MPa. 

The purpose of the present study was to fabricate Bionate implants using microinjection 

moulding. After the implants were fabricated, they were characterized by TGA, DSC, and 

Instron compressive loading to evaluate chemical and mechanical properties of Bionate. 

3.2 Materials and Methods 

3.2.1 Bionate Drying Conditions 

The raw Bionate pellets (DSM Biomedical, California, USA) were dried in a vacuum 

oven (OV-11 Vacuum Oven, Jeiotech) at 90°C for 5 hours. After being dried, the pellets 

were placed in glass desiccators with indicating silica gel to sustain the dry state of the 

pellets until they were moulded into Bionate implants. 

3.2.2 Microinjection Moulding Conditions 

The Bionate pellets were subjected to microinjection moulding in a Battenfeld 

Microsystem 50 (Wittmann Battenfeld GmbH, Austria). The mould insert was 

manufactured at University Machine Services at the University of Western Ontario. The 
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cavity plate of the mould insert can be seen in Figure 3-1. The mould was made from 

6061 aluminum and P20 tool steel. The tool steel was used in high wear locations 

because it is pre-hardened and allows for better surface finish on polished surfaces. The 

hemispherical cavities were the only component of the mould that was polished to reduce 

tooling marks on the surface being transferred to pin. Due to the maximum amount of 

material that could be injected, the mould could eject two pins per injection. Each pin had 

an approximate volume of 0.4 cm3 with radius of curvature of 4.7 mm, diameter of 9.4 

mm and height of 1 cm. A schematic of the pin moulded from Bionate pellets can be seen 

in Figure 3-1. 
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a) 

 

b) 

 

c) 

 

Figure 3-1: a) Image of the cavity plate of the mould insert b) image of the other side 

of the mould insert c) schematic of final moulded Bionate pin 
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The same operating conditions were used to mould all three grades of Bionate and are 

listed in Table 3-1. The dried Bionate pellets were placed into the Battenfeld hopper. 

Only one grade of Bionate was processed at a time to avoid cross contamination between 

polymers. A medical-grade lubricant called Pure Eze Mold Release was sprayed on the 

ejection side of the mould to improve pin release. The microinjection moulding process is 

represented in a schematic seen in Figure 3-2. 

Table 3-1: Battenfeld Microsystem 50 operating conditions 

Nozzle temperature (°C) 200 

Melt temperature (°C) 200 

Mould temperature (°C) 40 

Cooling time (s) 20 

Clamping force (kN) 50 

Holding pressure (bar) 1000 

Injection pressure (bar) 2500 

Injection speed (mm/s) 760 

Injection volume (mm3) 1100 
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a)

 

b)

 

 c) 

 

d) 

 

Figure 3-2: Schematic drawing of the microinjection moulding process: a) 

plasticization b) clamping c) moulding-holding and d) demoulding 
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3.3 Thermal Analysis of Bionate 

3.3.1 Materials and Methods 

3.3.1.1 Thermogravimetric Analysis (TGA) 

The thermal stability of Bionate-Low, Bionate-Mid, and Bionate-High were measured 

using a Mettler Toledo TGA/SDTA851e model (Mettler-Toledo Inc., Mississauga, ON, 

Canada). An 11 mg pellet sample was contained in an aluminum pan. The sample was 

heated from 25°C up to 600°C with a heating ramp of 10°C/min under nitrogen purge of 

40 mL/min. 

3.3.1.2 Differential Scanning Calorimetry (DSC) 

A differential scanning calorimeter (DSC822e, Mettler Toledo Inc., Mississauga, ON, 

Canada) was used to determine physical transformations of Bionate-Low, Bionate-Mid, 

and Bionate-High. A 4 mg pellet sample was contained in an aluminum pan with a 

10°C/min heating ramp from -75°C up to 200°C under nitrogen atmosphere. 

3.3.2 Results 

3.3.2.1 Thermogravimetric Analysis 

The TGA results shown in Figure 3-3 display the change in mass for each grade of 

Bionate. The curves displayed in Figure 3-4 show the rate of mass change over time for 

each grade of Bionate. Bionate-Low and Bionate-Mid start to decompose around the 

same temperature and Bionate-Low has the highest temperature of maximal rate of mass 

loss. 



47 

 

 

Figure 3-3: TGA mass change curves for Bionate-Low, Bionate-Mid and Bionate-

High 

 

Figure 3-4: TGA first derivative of mass change curve for Bionate-Low, Bionate-

Mid and Bionate-High 
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3.3.2.2 Differential Scanning Calorimetry 

The DSC results shown in Figure 3-5 display the crystallization process of Bionate-Low, 

Bionate-Mid and Bionate-High up to 200°C (this temperature was selected because 

thermal degradation of Bionate occurs between 210-230°C). 

 

Figure 3-5: DSC analysis of Bionate-Low, Bionate-Mid and Bionate-High 
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3.3.3 Discussion 

3.3.3.1 Thermogravimetric Analysis 

The peak of the first derivative curve indicates the point where the largest rate of change 

on the mass loss curve occurs. The minimum point on the peak is the temperature of 

maximal rate of mass loss and is called the point of inflection. The point of inflection for 

Bionate-Low, Bionate-Mid, and Bionate-High occurred at 369.00°C, 359.67°C and 

349.00°C, respectively. The effect of heat on the polymer chain is believed to take place 

on the urethane bonds. The phenomenon that is occurring is called transurethanization 

(urethane bonds dissociate and re-associate simultaneously). At high temperatures where 

the urethane bonds are no longer stable, equilibrium shift within the polymer moves 

towards dissociation of urethane bonds and volatile low molecular mass fragments are the 

main product10. Since Bionate consists of hard and soft segments, the hard-to-soft 

segment ratio can be used to better explain the inflection points. Higher thermal and 

mechanical properties occur in polycarbonate urethane polymers when there is a higher 

hard-to-soft segment ratio11. Bionate is composed of a hard segment (polyurethane) and a 

soft segment (polycarbonate). The hard segment of the polymer determines the stiffness 

of the polymer and therefore the more polyurethane in the polymer, the higher the 

polymer stiffness12. As determined in another study3 and from the mechanical assessment 

covered later in this chapter, Bionate-High has the highest stiffness out of the three 

different grades of Bionate that were studied. Bionate-High had more urethane bonds, 

which means more urethane bonds were ruptured as the temperature increased in the 

TGA. Decrease in inflection point temperature as the hard segment content increased in 

polycarbonate urethane has been documented in literature13.  

From the TGA data, mass loss for Bionate-Low, -Mid and –High were determined. Mass 

loss was calculated by the following equation (Equation 3-1): 

𝑴𝒂𝒔𝒔 𝒍𝒐𝒔𝒔 = 𝑭𝒊𝒏𝒂𝒍 𝒎𝒂𝒔𝒔!𝑰𝒏𝒊𝒕𝒊𝒂𝒍 𝒎𝒂𝒔𝒔
𝑰𝒏𝒊𝒕𝒊𝒂𝒍 𝒎𝒂𝒔𝒔

×𝟏𝟎𝟎%                               (3-1) 

The initial mass (mg) is determined by the value where sample decomposition starts and 

the final mass (mg) is determined by the value where sample decomposition ends. As 
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shown in Table 3-2, thermal decomposition started to occur in Bionate-Low, -Mid, and -

High at 210.33°C, 209.00°C, and 227.00°C, respectively. All three-onset temperatures 

are not far from the suggested processing conditions14. Bionate-Low is suggested to be 

processed between 190-210°C, while Bionate-Mid and -High are suggested to be 

processed between 200-210°C. 

As shown in Table 3-2, 95.51% mass loss occurred during decomposition between 

210.33 and 583.67°C for Bionate-Low. 88.57% mass loss occurred between 209.00 and 

583.67°C for Bionate-Mid. 90.97% mass loss occurred between 227.00 and 583.67°C for 

Bionate-High. Bionate-High starts to decompose at a higher temperature than Bionate-

Low and -Mid, but exhibits a faster rate of decomposition. 

Table 3-2: TGA data of Bionate-Low, Bionate-Mid and Bionate-High 

Bionate Grade Start of 

Decomposition 

(°C) 

Point of 

Inflection (°C) 

End of 

Decomposition 

(°C) 

Mass Loss (%) 

Low 210.33 369.00 583.67 95.51 

Mid 209.00 359.67 583.67 88.57 

High 227.00 349.00 583.67 90.97 

 

3.3.3.2 Differential Scanning Calorimetry 

Some polycarbonate urethanes exhibit two glass transition temperatures due to their 

copolymer nature. A glass transition temperature is associated with the soft segment of 

the polymer and occurs in the range of -40°C to -20°C13. The second glass transition 

temperature is associated with the hard segment of the polymer and occurs above 0°C13. 

Bionate has been reported to only have one glass transition temperature because the 

amorphous segment is small. Geary et al.3, determined the glass transition temperatures 

for Bionate 80A and 75D and there was no evidence of two-phase behaviour. The glass 
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transition temperatures of Bionate 80A and 75D have been determined to occur at 17°C 

and 76°C, respectively3. Another study determined the glass transition temperature of 

Bionate 80A at -16.2°C7. 

The glass transition occurs when the amorphous material transitions from a brittle glassy 

state into rubber like molten state as the temperature increases. The glass transition 

temperature will always be lower than the melting temperature of the crystalline state. 

The DSC results for glass transition temperature and start of crystallization melting are 

shown in Table 3-3. Endothermic signals are present for each grade of Bionate ranging 

from 100°C to 130°C. These endothermic peaks are associated with the disordering of 

hard micro-domains and strongly related to the thermal history of the Bionate samples10. 

Table 3-3: DSC data of Bionate-Low, Bionate Mid and Bionate-High 

Bionate Grade Glass Transition 

Temperature (°C) 

Start of Crystallization Melting 

(°C) 

Low -23.0 126.67 

Mid -10.0 134.17 

High 27.5 120.83 

 

3.4 Mechanical Properties of Bionate 

3.4.1 Materials and Methods 

To determine the Young’s modulus of each implant material, axial compressive loading 

was applied to each implant type using an Instron 8500 (Norwood, MA, USA). The 

hemispherical tip of each implant was removed leaving a hollow cylinder (5 mm in 

height) to be used for compressive loading. Three specimens of each material were 

tested. The hollow cylinder was placed into the Instron machine and an initial force was 

applied to the cylinder. The initial deformation length was determined (Figure 3-6). The 

change in force (ΔF) and change in deformation length (ΔL) were measured throughout 
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compressive loading. For Bionate-Low and Bionate-Mid (n=3), the applied force of the 

cylinder was determined at increments of 0.1 mm (deformation length) from 0 mm to 1 

mm. For Bionate-High (n=3), the applied force was determined at increments of 0.05 mm 

from 0 mm to 0.5 mm. 

 

Figure 3-6: Schematic of Bionate implant under compressive loading within the 

Instron 
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3.4.2 Results 

The compression stress-strain results for each grade of Bionate are presented in Figure 

3-7. 

 

Figure 3-7: Mean (± one standard deviation) stress-strain curve for all three grades 

of Bionate 
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The Young’s modulus was determined from the calculated axial stress (𝜎) and strain (𝜀) 

for each material (refer to Equation 3-2). 

𝑬 = 𝝈
𝜺
                           (3-2) 

Axial stress was calculated by: 

𝝈 = 𝑭
𝑨
                (3-3) 

𝜎 is the axial stress [MPa], 𝐹 is the compressive load [N] and 𝐴 is the cross sectional area 

of the hollow cylinder [mm2]. 

Axial strain was calculated by: 

𝜺 = 𝚫𝑳
𝑳𝒊𝒏𝒊𝒕𝒊𝒂𝒍

               (3-4) 

𝜀 is the axial strain, Δ𝐿 is change in deformation length [mm] and 𝐿!"!#$%$ is initial 

deformation length before compressive loading begins [mm]. From the stress-strain 

curves, the Young’s moduli of Bionate-Low, -Mid and -High were determined and are 

displayed graphically as the mean (n=3) ± standard deviation in Figure 3-8. 
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Figure 3-8: Mean (± one standard deviation) Young's moduli for Bionate-Low, 

Bionate-Mid and Bionate-High 
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3.4.3 Discussion 

The data demonstrates the mechanical differences that occur between the different 

Bionate formulations. The mean Young’s moduli (± one standard deviation) for Bionate-

Low, -Mid, and -High were 0.020±0.001 GPa, 0.035±0.001 GPa, and 0.222±0.017 GPa, 

respectively. The larger standard deviation value for Bionate-High was attributed to one 

of the specimens reached high forces quite quickly and another specimen failed at 

deformation length of 0.4 mm. The calculated Young’s moduli values agree to values 

reported in literature8,15. This data would seem to suggest that the wear characteristics of 

Bionate-Low and –Mid should be comparable, while Bionate-High will produce more 

aggressive wear, if stiffness or modulus is the dictating factor. The effect of material 

stiffness will be discussed in Chapter 4. 

This study did not include the compressive strength of the Bionate grades. It was difficult 

to generate a specimen of sufficient size that would permit proper assessment of strength. 

Moreover, as this study was aimed at examining cartilage wear, the only relevant 

property with respect to Bionate is Young’s modulus. Regarding the relevance of strength 

of these biomaterials, this would eventually need to be addressed. However we did not 

note any failure, at least microscopically on the pins following testing. 

3.5 Conclusion 

The TGA and DSC results gave insight into the effect of temperature on all three grades 

of Bionate. Bionate-Low, -Mid and –High were all stable at body temperature (37°C) 

which makes the material desirable for orthopaedic implants. Each material was also 

stable at mould temperature of 200°C which made for better fabrication of implants. The 

compressive loading test showed Bionate-Low to have the lowest Young’s moduli value 

which accords with material hardness. There was an increase in Young’s moduli as the 

Shore hardness of Bionate increased. 
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Chapter 4  

4 The Effect of Low Moduli Implant Biomaterials on Early 
In Vitro Cartilage Wear 

Overview: This chapter focuses on the in vitro performance of the three Bionate 

formulations (Bionate-Low, Bionate-Mid and Bionate-High) and ceramic on the wear of 

bovine cartilage specimens. A pin-on-plate wear simulator was employed. Using a 

previously validated imaged-based technique, wear volume and depth was quantified 

throughout testing up to 50,000 cycles. 

4.1 Introduction 

As discussed in Chapter 1 (Section 1.2), hemiarthroplasty procedures are viable 

alternatives to total joint replacement in cases where only one articulating side of a 

synovial joint is damaged. Complication and failure rates are much higher in upper limbs 

than lower limbs for total arthroplasty because of the invasive surgical techniques that are 

performed for implantation of artificial joints1,2. Hemiarthroplasty procedures help to 

reduce complication and failure by maximizing bone preservation, restoring joint 

function and stability through less invasive surgical techniques3. These procedures are 

able to simplify the surgical approach, reduce costs and preserve native anatomy but the 

cartilage wear associated with these types of implants create suboptimal clinical 

outcomes.  

Most clinically used hemiarthroplasty implants are made from cobalt chromium or 

stainless steel. Literature has suggested that the high stiffness associated with these 

hemiarthroplasty implant materials are causing problems long term due to the decreased 

articular contact area and increased cartilage stress, which leads to damage of the 

adjacent articular cartilage4. In vivo studies have reported that the longevity of 

hemiarthroplasty implants is limited by wear because there is a correlation between 

length of time an implant is in place and the severity of articular cartilage wear5–7. The 

improvement of implant-cartilage contact mechanics is necessary to improve 

hemiarthroplasty implant longevity and performance8–10. 



60 

 

A study was conducted by Khayat10 to understand the effect of hemiarthroplasty implant 

material on early in vitro cartilage wear. The softest material that was studied against 

bovine cartilage was ultra high molecular weight polyethylene, which had a Young’s 

modulus value of 0.69 GPa. There were no significant differences measured in 

volumetric cartilage wear when comparing stainless steel, titanium, high-density 

polyethylene, and ultra high molecular weight polyethylene. The author concluded that 

the stiffness did not have an effect on articular cartilage wear because of the relatively 

high moduli for the range of materials tested when compared to cartilage. 

The purpose of this study was to investigate the effect of low hemiarthroplasty implant 

stiffness (down to 0.020 GPa) on cartilage wear. Hemiarthroplasty implant models were 

made from the three grades of Bionate with Young’s moduli ranging from 0.020 to 0.222 

GPa, as described in Chapter 3. The implants were reciprocated against bovine articular 

cartilage plugs in a pin-on-plate wear simulator to determine the relationship between 

material stiffness and in vitro cartilage wear.  Implant performance was evaluated in 

terms of volumetric wear and wear depth. It was hypothesized that decreasing the implant 

stiffness will reduce cartilage wear because of improved contact mechanics. 

4.2 Materials and Methods 

4.2.1 Implant Models 

Bionate pins (Bionate-Low, Bionate-Mid, and Bionate-High) with a radius of curvature 

of 4.7 mm were selected as the hemiarthroplasty implant models. The pins were attached 

on to a screw and coupling nut jig to fit into the pin-on-plate wear simulator (Figure 4-1). 

The three Bionate implant pins were made through the process of microinjection 

moulding as discussed in Chapter 3. The pins were washed using a diluted isopropyl 

alcohol solution to remove moulding lubricant and any debris from the pin surface. 



61 

 

 

Figure 4-1 Configuration of the pin-on-plate wear simulator: The Bionate pin was 

threaded on to the screw and coupling nut jig. A constant load of 30 N was applied 

to the cartilage surface via the implant model. 
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The procedure for determining the Young’s moduli of each Bionate implant was 

described in Chapter 3. The average surface roughness was measured using a Veeco 

Wkyko NT1100 optical profiler (Plainview, New York) to determine if differences in 

cartilage wear could be attributed to surface finish. The surface roughness average for 

each implant material is shown in Table 4-1. There was no significant difference in 

surface roughness average among the Bionate implants (p>0.05). 

Table 4-1: Surface roughness average for the four implant materials tested 

Implant Material Surface Roughness Average, Ra [µm] 

Bionate-Low 1.07±0.04 

Bionate-Mid 1.15±0.21 

Bionate-High 0.94±0.28 

Ceramic (Si3N4) 0.02 

 

4.2.2 Tissue Acquisition and Preparation 

Bovine ulnae and radii obtained from a local abattoir (Ralph Bos Meats Ltd, Strathroy, 

ON) were frozen at -20°C within 12 hours of death. Similar specimens have been tested 

previously in our laboratory10. Studies have shown that freezing cartilage specimens at     

-20°C and thawing the specimens does not alter the mechanical properties of articular 

cartilage10–14.  

Cylindrical plugs of cartilage and subchondral bone were harvested from the proximal 

faces of the ulnae and radii once the specimen was thawed. A diamond-tip hole saw with 

a diameter of 25 mm was used to extract 5 mm deep cylindrical plugs of cartilage and 

underlying subchondral bone, one each from the radial and ulnar sides of the bovine joint. 

The specimens were randomly placed in the wear simulator. The cartilage specimens 

were potted into custom jigs using Instant Tray Mix (Lang Dental Manufacturing Co., 
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Inc., Illinois). The cartilage surfaces were scanned before wear testing using a non-

contact 3D scanner (NextEngine, Santa Monica, California). The cartilage specimens 

were submerged in phosphate buffered saline and placed in a sealed bag and stored in a 

refrigerator at 4°C the night before testing. 

4.2.3 Wear Testing 

The cartilage plugs were submerged in a lubricant consisting of HyClone™ Alpha Calf 

Fraction Serum Supplement (GE Healthcare Life Sciences, Utah, USA) with an original 

protein concentration of 38 g/L15, which was diluted with phosphate buffered saline to a 

final protein concentration of 17 g/L in accordance with ISO standards16. The lubricant 

also contained 1% concentration of Antiobiotic-Antimycotic (Invitrogen, Missisauga, 

ON). Alpha calf serum was used because it has similar protein constituent fractions to 

synovial fluid17. The wear test experiments were conducted at room temperature (22ºC). 

Testing on the cartilage specimens was conducted using the six-station pin-on-plate wear 

simulator in linear reciprocal sliding in the flexion-extension axis. A load of 30 N was 

applied to the pins. The number of specimens for each group were as follows: n=6 for 

Bionate-Low, n=6 for Bionate-Mid, n=5 for Bionate-High, and n=5 for ceramic. The 

pins reciprocated against the cartilage plugs at a frequency of 1.2 Hz and a total stroke 

length of 10 mm for a total of 50,000 cycles. 

4.2.4 Wear Quantification 

The volume of cartilage removed during wear testing was employed as the metric to 

quantify cartilage wear. Volumetric wear was measured by comparing three-dimensional 

scans taken of the cartilage plugs before and after wear testing at 10,000, 20,000, 30,000, 

and 50,000 cycles.  

After testing, the worn specimens were stained with India ink because it can identify the 

extent and severity of fibrillation on the cartilage surface because the ink has a high 

affinity for fibrillation, which is a clear indicator of wear18. Excess ink was wiped off by 

using a damp cloth and the damaged areas were identified by where the ink adhered to 

the fibrillated cartilage. 
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The cartilage plugs were re-scanned using the 3D scanner under identical settings to the 

scans taken before testing. The macro range setting for the scanner was used, which 

produced a point cloud with 0.127 mm accuracy and containing 26 points/mm2. Each 

point cloud was exported as a mesh with triangular elements and 0.191 mm element 

length. The full-colour scans were exported as meshes in .ply extension format. 

Four landmarks on each cartilage plug surface were used as references to align the pre- 

and post- wear scans in MeshLab. A threshold filter was applied to the merged mesh in 

ParaView to determine the worn and unworn surfaces. The two surfaces were then 

opened in 3D Slicer where the Model-to-Model distance extension was used to determine 

the distance between the two surfaces. The new distance model was opened in ParaView 

where the wear track was selected and exported as a .vtk file. A custom written VTK 

algorithm, previously used by Khayat10, was used to calculate the distance between the 

vertices of the triangular element meshes in MATLAB (see Appendix A). The vertices 

with the same coordinates had a distance of zero between them and therefore represented 

the unworn regions. The distance between corresponding points on the registered surfaces 

indicated the depth of wear in the worn regions. The total volumetric wear was calculated 

by taking the area of each triangular mesh element and multiplying by the normal 

distance from the centroid of each triangular element, and then summed over the entire 

surface. 

The data was analyzed using a two way ANOVA to determine if significant differences 

were observed based on material and number of wear cycles. 
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4.3 Results 

Volumetric wear (mean ± one standard deviation) are shown in Figure 4-2 for Bionate-

Low, -Mid, -High, and ceramic implant models. Of the three materials investigated in this 

study, Bionate-High and ceramic produced visible evidence of cartilage wear across all 

specimens tested. There was no significant change in volumetric wear between Bionate-

Low and Bionate-Mid (p>0.05). There was also no significant change in volumetric wear 

between Bionate-High and ceramic (p>0.05). Bionate-Low had significantly less 

volumetric wear (p<0.001) than Bionate-High and ceramic. Bionate-Mid also had 

significantly less volumetric wear (p<0.001) than Bionate-High and ceramic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



66 

 

a)

 

b)

 

c)

 

d)

 

Figure 4-2: Mean (± one standard deviation) volumetric wear for: a) Bionate-Low b) 

Bionate-Mid c) Bionate-High and d) ceramic. Bionate-High and ceramic produced 

significantly more wear than Bionate-Low and Bionate-Mid (p<0.001). 

 

 

 

 



67 

 

Figure 4-3 shows that after 50,000 cycles there is an increase in volumetric wear as the 

implant stiffness increases. There was a significant change in volumetric wear (p<0.05) 

between 10,000 and 50,000 cycles. 

 

Figure 4-3: Mean (± one standard deviation) volumetric wear after 50,000 cycles for 

each implant material. Volumetric wear significantly increased between 10,000 and 

50,000 cycles (p<0.05). 
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The wear depths were calculated for each implant material across the four wear cycles. 

The average wear depth was determined by dividing the volumetric wear by the 

measured contact areas at the implant-cartilage interface using the casting technique (see 

Appendix B). Wear depth (mean ± one standard deviation) are shown in Figure 4-4 for 

Bionate-Low, -Mid, -High, and ceramic. There was no significant change in wear depth 

between Bionate-Low and Bionate-Mid (p>0.05). There was also no significant change in 

wear depth between Bionate-High and ceramic (p>0.05). Bionate-Low produced 

significantly shallower cartilage wear tracks (p<0.001) than Bionate-High and ceramic. 

Bionate-Mid had a significantly shallower wear depth (p<0.001) than Bionate-High and 

ceramic. 
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a)   

 

b)        

 

c)        

 

d)           

 

Figure 4-4: Mean (± one standard deviation) wear depth for: a) Bionate-Low b) 

Bionate-Mid c) Bionate-High and d) ceramic. Bionate-High and ceramic produced 

significantly deeper wear tracks in the cartilage plugs (p<0.001). 

 

 

 



70 

 

4.4 Discussion 

Volumetric wear has been quantified by mass difference in samples, India ink, and 

nuclear magnetic resonance (NMR). The difference in specimen mass before and after 

wear testing can be difficult to execute and inaccurate due to the high water content in 

cartilage. The “gold standard” to quantify cartilage wear is determining the amount of 

cartilage removed based on the protein content found in the lubricant and then expressing 

it as a function of the cartilage’s original surface volume or area. The mass of cartilage 

removed during wear testing can be inferred from the hydroxyproline content in the 

lubricating fluid based on the assumption that this protein accounts for 7.8% of bovine 

cartilage dry weight18. 

India ink is used in semi-quantitative cartilage wear assessment. McGann et al. reported a 

high correlation between wear rates measured using India ink staining protocol and the 

“gold standard” protocol18. The wear tracks were stained by India ink to visualize the 

damaged cartilage. Images were taken with a dissection microscope and the black and 

white pixel images were imported into MATLAB and a threshold technique was applied. 

The number of black pixels were counted and converted into an area, which represented 

the area of cartilage damage. The stained areas were normalized to account for 

differences between the contact areas to yield a percentage of the specimen contact area 

that had been damaged18. The use of India ink was deemed an effective, inexpensive and 

quick technique for evaluating cartilage degradation and thus making it a sufficient 

alternative to mass difference analysis. 

Volumetric wear has also been measured using NMR. Vertical magnet scans of the worn 

cartilage surface have been taken and a curve fitting program is used to estimate the 

unworn cartilage surface topography based on the perimeter geometry of the wear track19. 

NMR is not always the most optimal solution because it takes a long time to process and 

there is possible error in the curve-fitting program. We opted to use a non-contact 3D 

scanner in our wear study because it would enable a direct comparison between 3D 

meshes generated from before and after scans of the cartilage surface without risking 

cartilage degradation. 
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The purpose of this study was to determine cartilage wear for the different implant 

materials studied. The load employed for this experimental analysis was the same as the 

computational analysis (FEA) discussed in Chapter 2. As previously discussed, 

hemiarthroplasty procedures reduce articular contact area, which leads to an increase in 

contact stress. It was important to choose a load that would produce contact stress levels 

within the clinically relevant range for various hemiarthroplasty procedures. Post-

operative contact stresses have been reported as 2.28 MPa20 in shoulder hemiarthroplasty 

(humeral head implant against glenoid) procedures, 5.4 MPa21 in elbow hemiarthroplasty 

(radial head implant against capitellum) procedures and 10 MPa22 in hip hemiarthroplasty 

(femoral head implant against acetabulum) procedures. The finite element model showed 

that Bionate-Low, -Mid, -High and ceramic should produce stresses within this clinical 

range of 2.28-10 MPa. 

Overall, the data showed that there is a clear relationship between implant stiffness and 

early in vitro cartilage wear. It is interesting to note that there was very little to no wear 

with Bionate-Low and Bionate-Mid, strongly suggesting that there may be a threshold of 

contact area/stress that initiates wear of cartilage. It would thus seem that implants with a 

modulus of approximately 0.035 GPa or less might produce no wear, at least in the early 

stages.  

The Bionate-High and ceramic implants produced the smallest contact area at the 

implant-cartilage interface and produced the largest amount of volumetric wear. The 

amount of volumetric wear could have been caused by the increase in contact stress 

magnitudes that result from a decrease in contact area. The large standard deviations 

measured in the Bionate-High and ceramic wear results could have been a result of 

cartilage variation. Both Bionate-High and ceramic implants showed an increase of 

average volumetric wear over 50,000 cycles. With there being no significant change in 

volumetric wear (p>0.05) and wear depth (p>0.05) between these two materials, despite 

the very large difference in the modulus of elasticity, suggests that there is not a linear 

relationship between wear and stiffness, and there is a threshold level as noted above. 

Further biomaterials will need to be studied to determine the optimal Young’s moduli 

range for hemiarthroplasty implants. 
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Out of the six Bionate-Mid specimens studied, volumetric wear was only detected on one 

cartilage specimen. This wear could have been caused by material attaching to the 

implant surface therefore making the implant material more abrasive. 

There are some limitations with using a pin-on-plate wear simulator to conduct in vitro 

wear testing. The apparatus is unable to replicate native joint motion and in vivo joint 

geometry. The duration of testing was relatively short (purpose was to gain information 

on early in vitro cartilage wear) and the cartilage specimens were harvested from bovine 

versus human specimens. A constant load was applied across each specimen and 

therefore future studies could be conducted to investigate the affect of varying load on 

volumetric cartilage wear. In vivo physiological processes such as cellular activity and 

inflammatory responses were not simulated by this study. 

4.5 Conclusion 

The data suggests that using Bionate-Low and Bionate-Mid as a potential 

hemiarthroplasty implant material improves contact mechanics that result from increasing 

the cartilage-implant contact area while reducing peak contact stress at the implant-

cartilage interface. Bionate-High produced increasing amounts of volumetric wear, which 

indicates that Bionate-High is too stiff of a material to improve contact mechanics. 

Perhaps the most impactful finding of this study is that modulus threshold likely exists 

with regard to wear, and this would appear to be approximately 0.020-0.035 GPa for at 

least the loading level modeled herein. This study does strongly suggest that implant 

materials such as polyethylene (Young’s moduli of ~0.7-2 GPa), polyetheretherketone 

(Young’s moduli of ~4 GPa) and other materials in the same modulus range do not, in all 

likelihood, reduce wear relative to cobalt chromium implants, despite that thought trend 

in the orthopaedic industry. It would hence seem that hemiarthroplasty devices should be 

only considered if they have a modulus 0.035 GPa or less if reduced cartilage wear is 

desired. 
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Chapter 5  

5 Conclusions and Recommendations 

5.1 Findings Related to Objectives & Hypotheses 

This work investigated the effect of low stiffness biomaterials on hemiarthroplasty 

contact mechanics using a finite element model and in vitro wear tests. The data 

presented in this body of work met the objectives that were stated in Chapter 1 (Section 

1.7.1). To reiterate, the objectives were: 

1. To develop and employ a finite element model to assess the effect of low modulus 

implants in the range of 0.015-0.288 GPa on cartilage contact area and peak 

contact stress (Chapter 2). 

2. To develop an efficient and effective way to fabricate Bionate hemispherical-

tipped implants and to characterize the chemical and mechanical properties of 

Bionate implants (Chapter 3). 

3. To quantify the effect of varying Bionate implant stiffness on early in vitro 

cartilage wear (Chapter 4). 

The findings from the studies conducted in Chapters 2, 3 and 4 are reviewed below. 

In Chapter 2, a three-dimensional finite element model was constructed to determine 

peak contact stress and contact area of the low modulus Bionate implants investigated in 

this work. There was a decrease in peak contact stress and increase in contact area at the 

implant-interface with a decrease in implant modulus. Moreover, this data revealed the 

rapid change in contact mechanics (viz. area and stress) that occurs as the modulus is 

lowered in the range that approaches cartilage modulus. 

In Chapter 3, microinjection moulding successfully fabricated Bionate® hemispherical-

tipped implants. Chemical and mechanical testing was conducted on the implants to 

characterize the implant properties. The TGA results concluded that Bionate-Low, -Mid 

and -High were stable at body temperature, which makes the material reasonable for 
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hemiarthroplasty applications. The results from compressive loading suggested that 

Bionate-Low and Bionate-Mid might have comparable wear characteristics because of 

their similar Young’s moduli values. 

Chapter 4 focused on the in vitro wear studies. Even though Bionate-High has a much 

lower Young’s modulus (0.2 GPa) than currently used hemiarthroplasty implant 

materials, it was demonstrated that a stiffness of roughly 0.2 GPa still causes significant 

cartilage wear. Based on the wear testing results, implants with a Young’s moduli of 

approximately 0.035 GPa or less will be required to reduce cartilage wear. The decrease 

in peak stress with lower implant stiffness shown by the finite element simulation 

corroborates the reduction in average volumetric wear presented in Chapter 4. The 

Bionate-Low model showed the lowest peak contact stress and resulted in no visible 

cartilage wear during in vitro wear testing. Within the range of low stiffness materials 

examined, lower peak contact stress and higher contact area were observed as the 

Young’s moduli decreased which indicates that a material with similar characteristics to 

cartilage optimizes contact mechanics and decreases cartilage wear. 

Two hypotheses were formulated at the beginning of this investigation (Section 1.7.2). 

The first hypothesis stated the finite element model would show an increase in contact 

area and a decrease in peak contact stress at the implant-cartilage interface with a 

decrease in implant Young’s moduli. This hypothesis was hence accepted based on 

moduli below 0.038 GPa resulting in an increase in contact area and a decrease in peak 

contact stress. The second hypothesis stated that decreasing implant stiffness would 

reduce wear on the articulating cartilage because of improved contact mechanics. This 

hypothesis was accepted based on the significant decrease in cartilage wear observed for 

Bionate-Low and Bionate-Mid (p<0.001). 

5.2 Recommendations for Future Work 

The three-dimensional finite element model used published experimental Young’s 

moduli and Poisson’s ratio data. A more thorough validation of the model should be 

conducted using the experimental values determined from the compressive testing 

performed in Chapter 3. Contact areas determined in the finite element model could then 
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be compared to experimental contact areas measured from casts taken of the Bionate 

implant-cartilage interface and contact areas measured from Fuji Pressure Sensitive 

Film®. 

Using a three dimensional scanner to compare cartilage topography before and after wear 

testing allowed for quick and accurate capture of three dimensional cartilage meshes. 

India ink helped to quantify cartilage wear and make it visible on these cartilage meshes. 

To further develop this methodology for forthcoming investigations, these results can be 

compared to mass changes in cartilage plugs or compared to measured protein content of 

the lubricating bath after wear testing. 

Further chemical and mechanical analysis can be done to increase material 

characterization. Additional chemical characterizations include water absorption and 

molecular weight of Bionate. Water absorption will help to better understand the 

lubrication abilities of Bionate in wear testing. Measuring the weight average molecular 

weight and the number average molecular weight to determine the polydispersity of 

Bionate will help indicate which mechanisms cause thermal degradation. Additional 

mechanical characterizations include compressive strength and fatigue strength should be 

tested. Compressive strength will provide insight into the maximum load that Bionate can 

withstand before failure. Determining the fatigue strength of Bionate will provide insight 

into the maximum stress Bionate can withstand during cyclic loading. 

5.3 Conclusions 

Even though hemiarthroplasty procedures have been clinically successful, they can cause 

progressive cartilage damage over time due to the use of relatively stiff metallic implant 

materials. This work investigated the role of a low stiffness implant material on implant-

cartilage contact mechanics and early in vitro cartilage wear. Within the range of implant 

materials examined, a higher contact area and lower peak contact stress was observed 

using a finite element model as Young’s moduli decreased, particularly when the 

modulus was below 0.04 GPa. An in vitro wear study demonstrated a significant decrease 

in cartilage wear for the 0.020 GPa and 0.035 GPa grades of Bionate (p<0.001). In a 

qualitative sense, the in vitro wear studies mirrored the results of the computational finite 



79 

 

element modeling which suggest this material will be a major advance if incorporated 

into hemiarthroplasty implant designs. 

In conclusion, these studies have demonstrated the desirable range of implant moduli to 

reduce cartilage wear, and have shown that Bionate has the potential to minimize 

cartilage wear for hemiarthroplasty constructs. These findings provide important and 

novel baseline information to set the stage for future explorations of low modulus 

materials to minimize or perhaps eliminate cartilage wear with hemiarthroplasty 

procedures. This is very timely and relevant, as less invasive implant systems are the goal 

for surgeons, biomechanists, and ultimately, patients. 
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Appendices 

6 A. MeshLab Mesh Registration and MATLAB 
Volumetric Wear Calculation Protocols 

This appendix describes the computational methods used to determine the volumetric 

wear between unworn and worn cartilage surface meshes. 

The pre- and post-wear cartilage scans of each specimen were imported to MeshLab as 

.ply files. The “Align” tool was applied to fix the position of the pre-wear scan by 

selecting “Glue Here Mesh.” The post-wear scan was selected and the “Point Based 

Gluing” option was used. This tool allows the user to select four landmarks on the two 

surfaces to merge the meshes. “Processing” the mesh alignment completed the merging. 

This process was repeated until the mesh alignment error was below five percent. The 

“Flattening the visible layers” tool was then used and a single .ply format exported the 

mesh. 

The merged mesh was then opened in ParaView (Kitware Inc, New York, USA) where 

the “Connectivity” filter was selected to separate the unworn and worn surfaces. A 

threshold function was applied to both surfaces and each surface was saved as a binary 

.vtk file. Both models were opened in 3D Slicer. The “Model-to-Model distance” 

extension was used to create a model that calculated the distance between the two 

surfaces. The file was exported in binary .vtk format and the colour-contour map was 

then opened in ParaView. Points where selected and extracted using the “Extract 

Selection” filter. The “Point Data to Cell Data” filter was applied to the model and 

exported in ASCII .vtk file format. 

The MATLAB function (.m file format) that was written to compute volume between the 

two surfaces to determine the volumetric wear is shown in Figure A-1. 
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function [postive_volumes negative_volumes] = parse_surface_results(input_file) 
% This program parses an input VTK surface and extracts the points and 
% polys 
  
% initialize incase they don't get filled; 
Dist_data=[];  
 
%Read in source surface info 
fid=fopen(input_file,'r'); 
  
compare1=false; 
compare2=false; 
  
DIST=false; 
  
while 1 
    tline=fgetl(fid); 
    compare1 = strncmpi(tline,'POINTS',6); 
    compare2 = strncmpi(tline,'POLYGONS',8); 
    compare3 = strncmpi(tline,'CELLS',5); 
    DIST = strncmpi(tline,'SCALARS Distance',16); 
    DIST2 = strncmpi(tline,'SCALARS Signed',14); 
  
    if tline==-1 
            break 
    end 
  
    if (compare1==true) 
        npoints=sscanf(tline,'%*s %i %*s',[1]); 
        fseek(fid,0,'cof'); 
        points=fscanf(fid,'%g',[3,npoints]); 
    end 
  
    if (compare2==true) 
            npolys=sscanf(tline,'%*s %i %*s',[1]); 
            fseek(fid,0,'cof'); 
            polys=fscanf(fid,'%*i %i %i %i',[3,npolys]); 
    end 
     
    if (compare3==true) 
            npolys=sscanf(tline,'%*s %i %*s',[1]); 
            fseek(fid,0,'cof'); 
            polys=fscanf(fid,'%*i %i %i %i',[3,npolys]); 
    end 
     
    if (DIST==true)||(DIST2==true) 
        fseek(fid,0,'cof'); 
        temp=fgetl(fid); 
        Dist_data=fscanf(fid,'%f'); 
    end 
  



82 

 

end 
  
fclose(fid); 
  
points=points'; 
polys=polys'; 
  
X=(points(polys(:,1)+1,1)+points(polys(:,2)+1,1)+points(polys(:,3)+1,1))/3; 
Y=(points(polys(:,1)+1,2)+points(polys(:,2)+1,2)+points(polys(:,3)+1,2))/3; 
Z=(points(polys(:,1)+1,3)+points(polys(:,2)+1,3)+points(polys(:,3)+1,3))/3; 
  
centroids=[X Y Z]; 
  
V_1_X=points(polys(:,2)+1,1)-points(polys(:,1)+1,1); 
V_1_Y=points(polys(:,2)+1,2)-points(polys(:,1)+1,2); 
V_1_Z=points(polys(:,2)+1,3)-points(polys(:,1)+1,3); 
  
V_1=[V_1_X V_1_Y V_1_Z]; 
  
V_2_X=points(polys(:,3)+1,1)-points(polys(:,1)+1,1); 
V_2_Y=points(polys(:,3)+1,2)-points(polys(:,1)+1,2); 
V_2_Z=points(polys(:,3)+1,3)-points(polys(:,1)+1,3); 
  
V_2=[V_2_X V_2_Y V_2_Z]; 
  
NORM=cross(V_1,V_2,2); 
  
areas=((NORM(:,1).*NORM(:,1)+NORM(:,2).*NORM(:,2)+NORM(:,3).*NORM(:,3)).^0.5)/2; 
  
normals=NORM./[((NORM(:,1).*NORM(:,1)+NORM(:,2).*NORM(:,2)+NORM(:,3).*NORM(:,
3)).^0.5) ((NORM(:,1).*NORM(:,1)+NORM(:,2).*NORM(:,2)+NORM(:,3).*NORM(:,3)).^0.5) 
((NORM(:,1).*NORM(:,1)+NORM(:,2).*NORM(:,2)+NORM(:,3).*NORM(:,3)).^0.5)]; 
  
volumes=Dist_data.*areas; 
postive_volumes=sum(volumes(find(volumes>0))); 

negative_volumes=sum(volumes(find(volumes<0))); 

Figure A-1: MATLAB function to determine volumetric wear between unworn and 

worn surface meshes 
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7 B. Experimental Implant-Cartilage Contact Area 
Determined from an Experimental Casting Technique 

The contact area used to determine wear depth in Chapter 4 was measured using a casting 

technique. Silicone-based dental cement, Reprosil® (Dentsply International Inc., Milford, 

DE, USA) was allowed to cure between the implant and the cartilage under compressive 

loading to measure the contact area at the implant-cartilage interface. Three casts were 

created for each of the four-implant materials. The casts were scanned to create images 

that could be opened in Image J where the contact area was measured. The contact area 

results from the casting technique are displayed graphically in Figure B-1. The wear 

depth was calculated by dividing the volumetric wear by the contact area determined 

from the casts. 

There was a 48-49% difference in contact area when comparing Bionate-Low to Bionate-

High and ceramic. There was a 1.15% difference in contact area between Bionate-High 

and ceramic. The larger contact area exhibited by Bionate-Low further helps to explain 

the negligible volumetric wear during the wear testing, likely due to more favourable 

contact mechanics between the implant and the cartilage. This would also decrease peak 

contact stress at the implant-cartilage interface. 
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Figure B-1: Mean (± one standard deviation) contact area measurements from 

casting for the four implant materials 
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